

Home Search Collections Journals About Contact us My IOPscience

Crystal structure and magnetic interactions in $\rm ZrCr_2S_4$

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1995 J. Phys.: Condens. Matter 7 5359 (http://iopscience.iop.org/0953-8984/7/27/020)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.151 The article was downloaded on 12/05/2010 at 21:39

Please note that terms and conditions apply.

Crystal structure and magnetic interactions in ZrCr₂S₄

M Hamedoun[†], A Hourmatallah[†], S Sayouri[†] and A Chatwiti[‡]

† Laboratoire de Physique du Solide, Faculté des Sciences, Dhar Mahraz BP, 1976 Fès, Morocco

‡ Laboratoire de Physique Théorique, Faculté des Sciences, Dhar Mahraz BP, 1796 Fès, Morocco

Received 16 January 1995, in final form 20 March 1995

Abstract. The evaluation of exchange integral intensities J_i is extended to the fourth order (i = 1, 2, 3, 4) for the spinel sulphur. We have performed EPR and dilatation measurements on a single crystal in the temperature range $4.2 \text{ K} \leq T \leq 300 \text{ K}$. The J_i -value is compared with that deduced from EPR measurements. Dilatation measurement confirms the absence of any tetragonal distortion as found by neutron diffraction.

A comparison between results obtained on a polycrystal and a single crystal is given.

1. Introduction

ZnCr₂S₄ is a normal spinel with a lattice parameter a = 10.001 Å and a sulphur position parameter u = 0.3845 obtained from the position of Bragg peaks and nuclear intensities measured on a pure polycrystal [1]. The variation in *R*-factor versus the sulphur parameter *u* allows one to estimate the accuracy as of the order of 0.003 [1].

In the paramagnetic region, Curie-Weiss behaviour has been observed above 100 K with $\Theta_p = 18$ K [2]. Below the Néel temperature $T_N = 15.5$ K, the chromium spin orders antiferromagnetically and the structure is helimagnetic. At $T_0 = 12$ K, other phases appear and persist until 0 K. For $T_0 \leq T \leq T_N$, only the incommensurable phase remains; T_0 agrees with a first-order transition [1].

The Mössbauer spectrum of the $ZnCr_2S_4$ polycrystal doped at 2% Fe at high temperatures $(T > T_N)$ consists of a single line $(\epsilon = 0)$ with an isomer shift $\delta = 0.80$ mm s⁻¹ typical for Fe²⁺ in a tetrahedral environment [3]. This proves that only Zn^{2+} ions were substituted by Fe²⁺.

At low temperatures, the coexistence of three magnetic phases, responsible for the reversibility of properties established for single-crystal magnetization, is confirmed and the values of the hyperfine parameters are given [3].

In the oxyspinel $ZnCr_2O_4$ and the selenospinel $ZnCr_2Se_4$, irreversibility effects have been observed at small fields [4,5] depending on the direction of the applied field. In these compounds, the irreversibility results from an increase in the size of favoured magnetic domains.

The weak Θ_p -value implies weak magnetic interactions and this positive value seems to be incompatible with the antiferromagnetism of ZnCr₂S₄. In order to obtain more information about the magnetic structure, it is necessary to determine exchange integral intensities between more distant neighbours J_i (i > 1). Our proposal is to calculate the J_i (i = 1, 2, 3, 4) on the basis of neutron and magnetic results [1, 3], to derive the J_1 -value from EPR measurements and to make a comparison between these results. We have performed dilatation measurements on a single crystal in the temperature range 4.2 K $\leq T \leq$ 300 K. These measurements show the absence of stoichiometric effects.

2. Dilatation measurements

Measurements have been performed on a single-crystal ZnCr₂S₄ sample in the temperature range 4.2 K $\leq T \leq 300$ K. In the limit of experimental errors the dilatation coefficient $\alpha_T = (1/a)(\partial a/\partial T)$ remains equal to zero for $T \leq 6$ K. For 6 K $\leq T \leq 12$ K, α_T is positive and weak ($\alpha_T \leq 5 \times 10^{-6}$ K⁻¹). For 12 K $\leq T \leq 300$ K, the α_T -values do not present any marked peak at T_N . So, no significant tetragonal distortion occurs as seen by neutron measurements.

3. EPR measurements

EPR measurements were performed on a single crystal in the temperature range 4.2 K $\leq T \leq 300$ K. The spectrum always consists of a single symmetrical absorption line and its linewidth remains constant above T = 150 K. Therefore, $\Delta H_{pp}(T)$ (peak-to-peak linewidth in the first-derivative spectrum) at room temperature may be considered as $\Delta H_{pp}(\infty)$. At T = 288 K, the lineshape is Lorentzian with g = 1.99 and $\Delta H_{pp} = 150$ G (figure 1).

Figure 1. EPR spectrum (absorption derivative) for a single crystal of $ZnCr_2S_4$ at T = 288 K.

We first calculated ΔH_{pp} considering only dipolar broadening and neglecting exchangenarrowing effects. Van Vleck's [6] method is applied. The corresponding $\Delta H_{pp}(dip)$ is about 1500 G (only the six nearest neighbours are considered).

The line is Lorentzian with $\Delta H_{pp} = 150$ G suggesting a narrowing by exchange. Following the theory of Anderson and Weiss [7], the half-width at half-power for an exchange narrowed is given by $\Delta \omega = \omega^2 d/\omega_e$, where ω_d is the dipolar linewidth and ω_e the exchange frequency. The value of ω_e is proportional to $\Delta H_{pp}(dip)/\Delta H_{pp}$ [8] and related to J_1 by $\omega_e = 1.68(J_1/g\mu_B)[S(S+1)]^2$ (μ_B is the Bohr magneton). The J_1 -value deduced is 1.75 K.

The model of calculation, even if valid only for the simple-cubic lattice, was shown to give good results for the spinel lattice also [9].

Figure 2. Schematic variation in the magnetization of a single crystal of $ZnCr_2S_4$ up to saturation at T = 4.2 K.

Table 1. Comparison between results obtained for a single crystal and a polycrystal.

(a)	μ_{s} (μ_{B})	H _c (kOe)	Ref.				
Single crystal	2,00	30					
Polycrystal	2.56	≥150	[11] [1]				
		J_1	J ₂		J_4		
(b)	Ref.	(K)	(K)	(K)	(K)		
Single crystal		2.66	-1.15	0.29	0.13		
Polycrystal	[11]	1.87	-0.76	0.29	0.14		
	[1]	2.05	-1.00	0.95			
		J _{aa}	J _{ab}	Jac	λ _H	λ _M ,	λ_{M_2}
(c)	Ref.	(K)	(K)	(K)	(K)	(K)	(K)
Single crystal		7	1.96	-2.28	8.98	8.98	8.89
Polycrystal	[11]	5.46	1.96	-0.72	6.16	6.20	5.91
	[1]	7.90	-0.20	3.60	6.20	7.00	6.30

4. Evaluation of J_1 , J_2 , J_3 and J_4 using molecular-field theory

We have considered that the magnetic properties of the $ZnCr_2S_4$ system can be described by the classical Heisenberg Hamiltonian: 5362 M Hamedoun et al

$$H = 2\sum_{ij} J_{ij} S_i S_j.$$
⁽¹⁾

 $J_{ij}(k)$ are the elements of a matrix J(k) and represent the Fourier transform of the exchange integrals. Let $\lambda(k_0)$ be the highest eigenvalue of $J(k_0)$ for a magnetic structure of wavevector k_0 ; the associated energy is given by $E(k_0) = -\lambda(k_0)S^2$. To calculate J_1 , J_2 , J_3 and J_4 we need four equations. The first is taken from the experimental value of the Curie-Weiss temperature:

$$\Theta_{\rm p} = \frac{2}{3}S(S+1)\sum_{i=1}^{4}Z_iJ_i \qquad (Z_i=6, 12, 12, 12).$$
⁽²⁾

The second is given by the expression for the cosine of the helical angle Φ [10]:

$$\cos \Phi = \frac{1}{6} J_4 [-(J_2 + 2J_3) + \{(J_2 + 2J_3)2 - 3J_4(J_1 + 2J_2 - 2J_4)\}^{1/2}].$$
 (3)

The coexistence of the helimagnetic structure (indicated by subscript H) defined by the wavevector $k_1(0, 0, 0.79)$ and two modulated structures (indicated by subscripts M_1 and M_2) defined by the wavevectors $k_2(\frac{1}{2}, \frac{1}{2}, 0)$ and $k_3(0, 1, \frac{1}{2})$ suggests the equality of their free energies $(\lambda_H, \lambda_{M_1} \text{ and } \lambda_{M_2})$. We can write $\lambda_H(k_1) = \lambda_{M_1}(k_2)$, so that we obtain

$$2J_1(1 + \cos\phi) + 4J_2[(2\cos\phi + \cos 2\phi)] + 4J_3[1 + 2\cos(2\phi)] + 4J_4[1 + 2\cos\phi\cos(2\phi)]$$

= $J_1 + 2J_2 - 2J_4 + [(J_1 - 2J_2 - 2J_4)^2 + 8J_1^2]^{1/2}.$ (4)

At the critical field $H_c = 30$ kOe (figure 2), the helimagnetic structure is transformed into a conical structure typical of a ferromagnetic mode; so we obtain the fourth equation

$$\mu_{\rm s} H_{\rm c} = \lambda_{\rm F}(0,0,0) - \lambda_{\rm H}(0,0,0.79) \tag{5}$$

where μ_s is the saturation magnetization of the chromium spin and $\lambda_F(0, 0, 0)$ is the energy of the ferromagnetic structure ($\lambda_F(0, 0, 0) = \sum_{i=1}^4 Z_i J_i$).

Using equations (2)-(5), we can determine the fourth-nearest-neighbour interactions and the classical energies of different structures. The optimum values are given in table 1(a)-(c). We have also presented the couplings between planes. For in-plane coupling, $J_{aa} = 2J_1 + 4J_3 + 4J_4$. For inter-plane coupling, $J_{ab} = 4J_1 + 8J_2 + 4J_4$. For coupling between second-nearest neighbours, $J_{ac} = 4J_2 + 8J_3$.

5. Discussion

The value of J_1 obtained at low temperatures ($J_1 = 2.66$ K) is slightly superior to that obtained by EPR ($J_1 = 1.75$ K) in the paramagnetic region. This difference could be the effect of temperature on the Cr-Cr binding, and therefore on the Cr-S-S-Cr superexchange.

The couplings between planes are in agreement with helimagnetic order $(J_{aa} > 0, J_{ab} > 0 \text{ and } J_{ac} < 0)$.

According to the Goodenough-Kanamori [12, 13] rules, a positive sign was predicted for J_1 and J_4 and a negative sign for J_2 , J_3 and J_5 .

The application to $ZnCr_2S_4$, which is presented in table 1(b), yields an antiferromagnetic interaction between second-nearest neighbours and a ferromagnetic coupling for the first-,

third- and fourth-nearest neighbours. J_3 is considered as an average of direct and masked couplings.

The magnetization value of chromium obtained in the single-crystal form ($\mu_s = 2\mu_B$) is much weaker than obtained in the polycrystal ($\mu_s = 2.56\mu_B$). These two values are lower than the theoretical value ($\mu_s = 3\mu_B$). The unsaturated value of the Cr moment results from the existence of magnetic domains at low temperatures [14]. The inflection point at $H_c = 30$ kOe on the magnetization curve may be considered as an average initial field corresponding to a spin-flop transition for the collinear structures and a transition to a fan structure for the helical structure. The schematic variation in the magnetization up to saturation presented in figure 2 suggests a higher-field saturation value. More discussion has been given in [3, 15].

Acknowledgments

The authors wish to thank Dr Nogues and Dr Viticoli for fruitful discussions and technical aid.

References

- Hamedoun M, Wiedenmann A, Dormann J L, Nogues M and Rossat-Mignod J 1986 J. Phys. C: Solid State Phys. 19 1783
- [2] Lotgering F K 1964 Proc. Int. Conf. on Magnetism (Nottingham, 1964) (London: Institute of Physics and Physical Society) p 533
- [3] Hamedoun M, Wiedenmann A, Dormann J L, Nogues M and Rossat-Mignod J 1986 J. Phys. C: Solid State Phys. 19 1801
- [4] Plumier R 1966 J. Physique 27 213
- [5] Fiorani D and Viticoli S 1986 J. Magn. Magn. Mater. 49 83
- [6] Van Vleck J H 1948 Phys. Rev. 74 1168
- [7] Anderson P W and Weiss P R 1953 Rev. Mod. Phys. 25 269
- [8] Poole P C and Farach H 1972 The Theory of Magnetic Resonance (New York: Wiley)
- [9] Gesmondo F 1975 Nuovo Cimento 25 795
- [10] Lotgering F K 1967 J. Phys. Chem. Solids 29 699
- [11] Hamedoun M, Rachadi A, Hourmatallah A and Benyoussef A 1995 to be published
- [12] Goodenough J B 1960 Phys. Rev. 117 1442
- [13] Kanamori J 1959 J. Phys. Chem. Solids 6 287
- [14] Nogues M, Hamedoun M, Dormann J L and Villers G 1985 Phys. Status Solidi 91 597
- [15] Hamedoun M, Slimani M, Sayouri S and Benyoussef A 1994 Phys. Status Solidi 144 441